Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tensorial formulation of the wave equation for modelling curved interfaces

Identifieur interne : 00D138 ( Main/Exploration ); précédent : 00D137; suivant : 00D139

Tensorial formulation of the wave equation for modelling curved interfaces

Auteurs : Dimitri Komatitsch [France] ; Fabien Coutel [Australie] ; Peter Mora [Australie]

Source :

RBID : ISTEX:B9CC5584507E9D1E7B2D4170202278902A38D410

Abstract

Many situations of practical interest involving seismic wave modelling require curved interfaces and free-surface topography to be taken into account. Collocation methods, for instance pseudospectral or finite-difference algorithms, are attractive approaches for modelling wave propagation through these complex realistic models, particularly in view of their ease of implementation. Nonetheless, these methods formulated in Cartesian coordinates are not well suited to such models because the sharp interfaces and free surface do not coincide with grid lines. This leads to a slow convergence rate, resulting in visible artefacts such as diffractions from staircase discretizations of interfaces and the free surface. Such problems can be overcome through the use of curved grids whose lines follow sharp interfaces and whose density increases in the vicinity of these interfaces. One approach is to solve the wave equation in Cartesian coordinates by using the chain rule to express the Cartesian partial derivatives in terms of derivatives computed in the new coordinate system. However, it is more natural to solve the tensorial form of the wave equation directly in the desired curvilinear coordinate system, making use of a transformation of a square grid onto the curved grid. The tensorial approach, which is independent of the coordinate system, requires the same number of derivatives to be computed as in the Cartesian case, whereas the chain rule approach requires 25 per cent more in 2-D and 50 per cent more in 3-D. While the tensorial approach is less computationally expensive than the chain rule method, it requires more memory. Numerical tests validate the tensorial approach by comparing the results with the analytical solution of the tilled Lamb problem. Other numerical experiments demonstrate the ability of the tensorial formulation to model wave propagation in the presence of free-surface topography. Mode conversions between Rayleigh and body waves are observed when bumps on the free surface are encountered.

Url:
DOI: 10.1111/j.1365-246X.1996.tb01541.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Tensorial formulation of the wave equation for modelling curved interfaces</title>
<author>
<name sortKey="Komatitsch, Dimitri" sort="Komatitsch, Dimitri" uniqKey="Komatitsch D" first="Dimitri" last="Komatitsch">Dimitri Komatitsch</name>
</author>
<author>
<name sortKey="Coutel, Fabien" sort="Coutel, Fabien" uniqKey="Coutel F" first="Fabien" last="Coutel">Fabien Coutel</name>
</author>
<author>
<name sortKey="Mora, Peter" sort="Mora, Peter" uniqKey="Mora P" first="Peter" last="Mora">Peter Mora</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B9CC5584507E9D1E7B2D4170202278902A38D410</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1111/j.1365-246X.1996.tb01541.x</idno>
<idno type="url">https://api.istex.fr/document/B9CC5584507E9D1E7B2D4170202278902A38D410/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002270</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002270</idno>
<idno type="wicri:Area/Istex/Curation">002270</idno>
<idno type="wicri:Area/Istex/Checkpoint">002543</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002543</idno>
<idno type="wicri:doubleKey">0956-540X:1996:Komatitsch D:tensorial:formulation:of</idno>
<idno type="wicri:Area/Main/Merge">00E300</idno>
<idno type="wicri:Area/Main/Curation">00D138</idno>
<idno type="wicri:Area/Main/Exploration">00D138</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Tensorial formulation of the wave equation for modelling curved interfaces</title>
<author>
<name sortKey="Komatitsch, Dimitri" sort="Komatitsch, Dimitri" uniqKey="Komatitsch D" first="Dimitri" last="Komatitsch">Dimitri Komatitsch</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut de Physique du Globe, 4 Place Jussieu, 75252 Paris</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coutel, Fabien" sort="Coutel, Fabien" uniqKey="Coutel F" first="Fabien" last="Coutel">Fabien Coutel</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland University Advanced Center for Earthquake Studies, 4072 Qld, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mora, Peter" sort="Mora, Peter" uniqKey="Mora P" first="Peter" last="Mora">Peter Mora</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Queensland University Advanced Center for Earthquake Studies, 4072 Qld, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Journal International</title>
<title level="j" type="abbrev">Geophys. J. Int.</title>
<idno type="ISSN">0956-540X</idno>
<idno type="eISSN">1365-246X</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="1996-10">1996-10</date>
<biblScope unit="volume">127</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="156">156</biblScope>
<biblScope unit="page" to="168">168</biblScope>
</imprint>
<idno type="ISSN">0956-540X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0956-540X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Many situations of practical interest involving seismic wave modelling require curved interfaces and free-surface topography to be taken into account. Collocation methods, for instance pseudospectral or finite-difference algorithms, are attractive approaches for modelling wave propagation through these complex realistic models, particularly in view of their ease of implementation. Nonetheless, these methods formulated in Cartesian coordinates are not well suited to such models because the sharp interfaces and free surface do not coincide with grid lines. This leads to a slow convergence rate, resulting in visible artefacts such as diffractions from staircase discretizations of interfaces and the free surface. Such problems can be overcome through the use of curved grids whose lines follow sharp interfaces and whose density increases in the vicinity of these interfaces. One approach is to solve the wave equation in Cartesian coordinates by using the chain rule to express the Cartesian partial derivatives in terms of derivatives computed in the new coordinate system. However, it is more natural to solve the tensorial form of the wave equation directly in the desired curvilinear coordinate system, making use of a transformation of a square grid onto the curved grid. The tensorial approach, which is independent of the coordinate system, requires the same number of derivatives to be computed as in the Cartesian case, whereas the chain rule approach requires 25 per cent more in 2-D and 50 per cent more in 3-D. While the tensorial approach is less computationally expensive than the chain rule method, it requires more memory. Numerical tests validate the tensorial approach by comparing the results with the analytical solution of the tilled Lamb problem. Other numerical experiments demonstrate the ability of the tensorial formulation to model wave propagation in the presence of free-surface topography. Mode conversions between Rayleigh and body waves are observed when bumps on the free surface are encountered.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Komatitsch, Dimitri" sort="Komatitsch, Dimitri" uniqKey="Komatitsch D" first="Dimitri" last="Komatitsch">Dimitri Komatitsch</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Coutel, Fabien" sort="Coutel, Fabien" uniqKey="Coutel F" first="Fabien" last="Coutel">Fabien Coutel</name>
</noRegion>
<name sortKey="Mora, Peter" sort="Mora, Peter" uniqKey="Mora P" first="Peter" last="Mora">Peter Mora</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00D138 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00D138 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:B9CC5584507E9D1E7B2D4170202278902A38D410
   |texte=   Tensorial formulation of the wave equation for modelling curved interfaces
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024